Can Legflow improve treatment of long femoropopliteal lesions: The REFLOW outcomes

Dr. Koen Deloose LINC 2020– Leipzig

My disclosures

X I do not have any potential conflicts of interest to report

o I have the following potential conflicts of interest to report:

Consulting
 Employment in industry
 Stockholder of a healthcare company
 Owner of a healthcare company
 Other(s)

DCB-treatment works... Proof of concepts

DCB POBA

1-Year Patency Rates of DCB (in ideal circumstances)

X

However in "Real Life"...

REFLOW study

A study investigating the Efficacy of the LEGFLOW Paclitaxel-Eluting for the treatment of long femoropopliteal lesions(TASC C&D)

CARDIONOVUM[®] Life deserves the best

SAFEPAX[®] 3rd generation, unique paclitaxel <u>non-crystalline</u> matrix system

SAFEPAX® matrix system, proprietary formulation of Lipophilic and Polymeric Ammonium Salt based excipient for PTX DCBs

Minimum wash off rate

Prevents PTX crystallization on the balloons surface

CARDIONOVUM portfolio **LEGFLOW**[°] RX/OTW Peripheral Balloons Dilatation Range. Platforms: 0.014" 0.018" 0.035"

APERTO° OTW

Hemodialysis Shunt Balloon, up to 20 bar Platform: 0.0.035"

RESTORE® DEB

Paclitaxel Releasing PTCA Balloon Catheter Platform: 0.014"

FCRE

Matrix

NEW: AMORPHOUS

Amorphous coating is not affected by mechanical stress due to the elastic, polymeric excipients

Mechanical stress response

During inflation, early DCBs generations coating is affected by flaking.

COMPETITORS

During inflation, Safepax (Amorphous coating) is not affected by flaking. Ammonium Salt prevents any crystallization on the balloon surface.

Cardionovum[®] has the highest coating stability (paclitaxel loss during handling & wash-off) of DCBs without compromising performance¹ CARDIONOVUM

FCRE

Study design

• Study Objective:

To evaluate the performance of the LEGFLOW Paclitaxel-Eluting Peripheral balloon catheter for the treatment of long femoropopliteal lesions (TASC C&D).

• Primary Endpoint:

Primary Patency at 12 months, defined as absence of a hemodynamically significant stenosis on duplex ultrasound (systolic velocity ratio ≤2.4) at the target lesion and without reintervention.

Participating centers

• **BELGIUM**

- M. Bosiers, K. Deloose, J. Callaert AZ Sint-Blasius, Dendermonde
- P. Peeters, J. Verbist, W. Van den Eynde Imelda Hospital, Bonheiden
- L. Maene, R. Beelen OLV, Aalst
- K. Keirse RZ Heilig Hart, Tienen
- J. Hendriks, P. Lauwers University Hospital Antwerp, Edegem

• **GERMANY**

- G. Torsello St. Franziskus-Hospital Münster
- D. Scheinert Universitätsklinikum Leipzig

Inclusion criteria

120 out of 120 patients enrolled (100%)

Main inclusion criteria

- Rutherford classification from 2 to 5
- **De novo lesion** in the femoropopliteal arteries, suitable for endovascular therapy
- Total target lesion length > 150mm

Study overview

Timeline	Baseline	Disch	1M	6M	12M	24M
Medication						
Physical examination						
Rutherford						
ABI						
Core Lab Ultrasound						
Color Flow Ultrasoun	d					

Patient Demographics

	N = 120	
Male (%)	65.80% (79/120)	
Age (min – max)	71.06 (35.05 – 93.16) years	Rutherford Classification
		24 13
Nicotine abuse (%)	56.67% (68/120)	
Hypertension (%)	77.50% (93/120)	3
Diabetes mellitus (%)	30.00% (36/120)	
Renal insufficiency (%)	15.00% (18/120)	80
Hypercholesterolemia (%)	53.30% (64/120)	
Obesity (%)	19.20% (23/120)	

Procedural characteristics

	N = 120
Procedure time (min-max)	52.17 (19-165) minutes
Scopy time (min – max)	7.32 (1.7 – 39.24) minutes *missing information for 2 patients
Contrast (min – max)	88.09 (9 – 195) mL
Cross-over performed (%)	83.33% (100/120)
Inflow Lesion (%)	10.83% (13/120)
Outflow lesion (%)	21.67% (26/120)

Lesion Characteristics

	N = 120
Lesion length (min – max)	216.08 (150 – 390) mm
Ref Vessel Diameter (min – max)	5.40 (4.05 – 6.00) mm
Pre-dilatation	64.20% (77/120)
1 DCB (%) 2 DCB's (%) 3 DCB's (%)	25.83% (31/120) 57.50% (69/120) 16.67% (20/120)
Post-dilatation (%)	22.50% (27/120)
Bail-out stenting (%)	35.00% (42/120)
Occlusion (%)	45.00% (54/120)
Calcified lesion (%)	67.50% (81/120)

Paclitaxel --> mortality?

Risk of Death Following Application of Paclitaxel Stents in the Femoropopliteal Artery of the Leg: / Meta-Analysis of Randomized Controlled Trials

Konstantinos Katsanos , Stavros Spiliopoulos, Panagiotis Kitrou, Miltiadis Krokidis, ance Originally published 6 Dec 2018 | https://doi.org/10.1161/JAHA.118.011245 | Journal of the American He

Stridinally published 6 Dec 2018 (https://doi.org/10.1161/JAHA.118.011240.00 Stridinally published 6

> ZILVER-PTX¹⁹ FINN-PTX¹⁸ IN.PACT SFA⁸² FEMPAC²⁹ LEVANT II²⁷ LEVANT II²⁶ CONSEQUENT³⁰ ILLUMENATE EU³² ISAR-STATH⁵¹ ISAR-PEBIS⁵⁵ ACOART I⁴⁰ IN.PACT SFA JAPAN⁴¹ **Fixed effect model**

Recommendations

Based on the FDA's review of available data and the advisory panel conclusions, the FDA recommends that health care providers consider the following:

- Continue diligent monitoring of patients who have been treated with paclitaxel-coated balloons and paclitaxel-eluting stents.
- When making treatment recommendations, and as part of the informed consent process, consider that there may be an increased rate of long-term mortality in patients treated with paclitaxel-coated balloons and paclitaxel-eluting stents.
- Discuss the risks and benefits of all available PAD treatment options with patients. For many patients, alternative treatment options to paclitaxel-coated balloons and paclitaxel-eluting stents provide a more favorable benefit-risk profile based on currently available information.
 For individual patients judged to be at particularly bigh risk for restenosis and repeat 3.7%
 - For individual patients judged to be at particularly high risk for restenosis and repeat femoropopliteal interventions, clinicians may determine that the benefits of using a paclitaxel-coated device outweigh the risk of late mortality.
 3.7%
 8.9%
 9.4%
 21.4%
 - In discussing treatment options, physicians should explore their patients' expectations, concerns, and treatment preferences.
 2.6% 9.9% 2.9%
 - Ensure patients receive optimal medical therapy for PAD and other cardiovascular risk factors as well as guidance on healthy lifestyles including weight control, smoking cessation, and exercise.
 1.7%
 14.2%
 3.2%
- **Fixed effect model Random effects model** Heterogeneity: $l^2 = 0\%$, $c^2 = 0$, n = 0.80

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p = 0.80

0.01 0.1 1 10 100

00.0%

12-month Survival Rate in 120pts

Primary Patency at 12M (120pts) & 24M (70pts)

70 70 67 67 65 62 58 56 54 54 53 50 47 47 46 45 43 42 42 41 40 40 40 38 36 34 10

Freedom from TLR at 12M (120 pts) & 24M (70 pts)

70 70 68 68 66 63 60 58 58 56 56 52 52 50 49 48 46 45 45 44 43 43 43 41 40 38 12

12-Month REFLOW results in perspective (lesions >20cm)

■ BMS ■ DES ■ bypass ■ DCB

BMS : Durability 200 study

DES : ZILVERPASS Zilver PTX results

Bypass ZILVERPASS results DCE

DCB : REFLOW results

FCRE

24-Month REFLOW results in perspective (lesions >20cm)

100 90 Primary patency & Freedom from TLR rate (%) 80 70 60 50 40 DCB DCB DES bypass DES bypass 30 20 10 N/A N/A 60.2 59.9 66.2 72.9 67.9 72.5 0

24M Primary Patency (%) 24M Freedom from TLR (%)

■ BMS ■ DES ■ bypass ■ DCB

BMS : Durability 200 study

DES : ZILVERPASS Zilver PTX results

Bypass ZILVERPASS results DCB :

DCB : REFLOW results

FCRE

Clinical Benefit - Rutherford evolution in 70pts

Evolution Rutherford Classification

Conclusion

- Final 12-month and preliminary 24-month results suggest that the LEGFLOW DCB is a valid and effective alternative to treat "real-life" long, complex and calcified femoropopliteal lesions
- With a 94.70% survival rate at 12-month, the LEGFLOW DCB proves it's safety
- Awaiting for final longer-term results (24-month data)